A solid sphere rolls down without slipping on an inclined plane, then percentage of rotational kinetic energy of total energy will be ........ $\%.$
$25$
$28.6$
$36$
$35$
A uniform sphere of mass $500\; g$ rolls without slipping on a plane horizontal surface with its centre moving at a speed of $5.00\; \mathrm{cm} / \mathrm{s}$. Its kinetic energy is
A circular disc has a mass of $1\ kg$ and radius $40\ cm$. It is rotating about an axis passing through its centre and perpendicular to its plane with a speed of $10\ rev/s$. The work done in joules in stopping it would be ...... $J$
The moment of inertia of a body about a given axis is $1.2 \;kg m^{2}$. Initially, the body is at rest. In order to produce a rotational kinetic energy of $1500\; joule$, an angular acceleration of $25 \;rad s^{-2}$ must be applied about that axis for a duration of
Two point masses of $0.3\ kg$ and $0.7\ kg$ are fixed at the ends of a rod of length $1.4\ m$ and of negligible mass. The rod is set rotating about an axis perpendicular to its length with a uniform angular speed. The point on the rod through which the axis should pass in order that the work required for rotation of the rod is minimum is located at a distance of
A sphere of mass $50\,gm$ and diameter $20\,cm$ rolls without slipping with a velocity of $5\,cm/sec$ . Its total kinetic energy is